Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2

نویسندگان

  • Gary A. Wayman
  • Soren Impey
  • Daniel Marks
  • Takeo Saneyoshi
  • Wilmon F. Grant
  • Victor Derkach
  • Thomas R. Soderling
چکیده

Members of the Wnt signaling family are important mediators of numerous developmental events, including activity-dependent dendrite development, but the pathways regulating expression and secretion of Wnt in response to neuronal activity are poorly defined. Here, we identify an NMDA receptor-mediated, Ca2+-dependent signaling pathway that couples neuronal activity to dendritic arborization through enhanced Wnt synthesis and secretion. Activity-dependent dendritic outgrowth and branching in cultured hippocampal neurons and slices is mediated through activation by CaM-dependent protein kinase kinase (CaMKK) of the membrane-associated gamma isoform of CaMKI. Downstream effectors of CaMKI include the MAP-kinase pathway of Ras/MEK/ERK and the transcription factor CREB. A serial analysis of chromatin occupancy screen identified Wnt-2 as an activity-dependent CREB-responsive gene. Neuronal activity enhances CREB-dependent transcription of Wnt-2, and expression of Wnt-2 stimulates dendritic arborization. This novel signaling pathway contributes to dynamic remodeling of the dendritic architecture in response to neuronal activity during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium Regulation of Dendritic Growth via CaM Kinase IV and CREB-Mediated Transcription

We report that CaM kinase IV and CREB play a critical role in mediating calcium-induced dendritic growth in cortical neurons. Calcium-dependent dendritic growth is suppressed by CaM kinase inhibitors, a constitutively active form of CaM kinase IV induces dendritic growth in the absence of extracellular stimulation, and a kinase-dead form of CaM kinase IV suppresses dendritic growth induced by c...

متن کامل

PCB-95 Modulates the Calcium-Dependent Signaling Pathway Responsible for Activity-Dependent Dendritic Growth

BACKGROUND Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated...

متن کامل

Regulation of CBP-Mediated Transcription by Neuronal Calcium Signaling

The transcription factor CREB is involved in mediating many of the long-term effects of activity-dependent plasticity at glutamatergic synapses. Here, we show that activation of NMDA receptors and voltage-sensitive calcium channels leads to CREB-mediated transcription in cortical neurons via a mechanism regulated by CREB-binding protein (CBP). Recruitment of CBP to the promoter is not sufficien...

متن کامل

Phosphorylation of CBP Mediates Transcriptional Activation by Neural Activity and CaM Kinase IV

Activity-regulated transcription has been implicated in adaptive plasticity in the CNS. In many instances, this plasticity depends upon the transcription factor CREB. Precisely how neuronal activity regulates CREB remains unclear. To address this issue, we examined the phosphorylation state of components of the CREB transcriptional pathway. We show that NMDA activates transcription of CREB-resp...

متن کامل

Regulation of neuronal mRNA translation by CaM-kinase I phosphorylation of eIF4GII.

Ca²⁺/calmodulin-dependent kinases (CaMKs) are essential for neuronal development and plasticity, processes requiring de novo protein synthesis. Roles for CaMKs in modulating gene transcription are well established, but their involvement in mRNA translation is evolving. Here we report that activity-dependent translational initiation in cultured rat hippocampal neurons is enhanced by CaMKI-mediat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006